Transform and inverse transform expansions for singular self-adjoint differential operators
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملInverse Harish - Chandra transform and difference operators
In the paper we calculate the images of the operators of multiplication by Laurent polynomials with respect to the Harish-Chandra transform and its non-symmetric generalization due to Opdam. It readily leads to a new simple proof of the Harish-Chandra inversion theorem in the zonal case (see [HC,He1]) and the corresponding theorem from [O1]. We assume that k > 0 and restrict ourselves to compac...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملAdjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملOn Eigenvalues Problem for Self-adjoint Operators with Singular Perturbations
We investigate the eigengenvalues problem for self-adjoint operators with the singular perturbations. The general results presented here include weakly as well as strongly singular cases. We illustrate these results on two models which correspond to so-called additive strongly singular perturbations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1958
ISSN: 0019-2082
DOI: 10.1215/ijm/1255381344